
Secure storage in OP-TEE
Jens Wiklander

ENGINEERS
AND DEVICES

WORKING
TOGETHER

Agenda
● What is secure storage?
● Timeline - secure storage improvements
● Encryption keys
● Secure Object

○ Hash tree
○ Hash tree header
○ Data block encryption
○ Atomic updates

● Object list
● Anti-rollback with RPMB
● What’s next?

ENGINEERS AND DEVICES
WORKING TOGETHER

What is Secure Storage?
● Persistent data store for crypto keys or other application-specific data
● Accessible to Trusted Applications only

○ Each TA has its own storage (TA isolation)
● Isolated from the non-secure world

○ Secure Storage data can’t be read, modified or deleted by user applications or the OS kernel
● OP-TEE implements the GlobalPlatform™ TEE Internal Core API v1.1

○ Chapter 5: Trusted Storage API for Data and Keys ; Persistent Object [Enumeration] Functions
and Data Stream Access Functions

TEE_OpenPersistentObject() TEE_AllocatePersistentObjectEnumerator()
TEE_CreatePersistentObject() TEE_FreePersistentObjectEnumerator()
TEE_CloseAndDeletePersistentObject1() TEE_ResetPersistentObjectEnumerator()
TEE_RenamePersistentObject() TEE_StartPersistentObjectEnumerator()
TEE_ReadObjectData() TEE_GetNextPersistentObject()
TEE_WriteObjectData()
TEE_TruncateObjectData()
TEE_SeekObjectData()

ENGINEERS AND DEVICES
WORKING TOGETHER

Timeline - secure storage improvements

1.0 1.1 2.0 2.1 2.2 2.3 2.4 2.5

RPMB Better TA isolation Improved integrity
with added hash

tree

Xtest 20000
(corruption tests)

Encryption
atomicity

Multiple storage
support

Single file per
object, remove

block cache

Anti-rollback
protection using

RPMB

ENGINEERS
AND DEVICES

WORKING
TOGETHER

Encryption keys
● Authenticated block encryption (AES-GCM), one File

Encryption Key (FEK) per file
● FEK is AES-encrypted using a 256-bit Trusted application

storage Key (TSK) then stored in the metadata of the file
● TSK is derived from Secure Storage Key (SSK) and the

Trusted Application UUID using HMAC-SHA256
● SSK is derived from a Hardware Unique Key (HUK) and a

constant string using HMAC-SHA256

ENGINEERS AND DEVICES
WORKING TOGETHER

Hash tree
● A complete binary tree
● Each node protects one data block (tag and IV from AES-GCM operation)
● Hash calculated as: SHA-256(tag || IV || flags || hashchild0 || hashchild1)
● Nodes start counting from 1 and data blocks from 0

○ this means that node 1 holds tag and IV for data block 0

Node 1

Node 3Node 2

Node 4 Node 5 Node 6

ENGINEERS
AND DEVICES

WORKING
TOGETHER

Hash tree header
● File encryption key, FEKC
● Counter

○ In case of no rollback protection, this is used to select the latest
version

● Metadata
○ Number of nodes
○ Payload length

ENGINEERS AND DEVICES
WORKING TOGETHER

Hash tree header continued
The hash tree header is constructed with the following steps
1. A new Initialization Vector, IV, is initialized from RNG
2. If FEKC is not initialized yet, FEKP is initialized from RNG and Encrypted FEK,

FEKC = AES-ECBENC(SSK, FEKP)
3. Counter is increased by one or if not yet initialized set to 1
4. AAD = Node1.hash || Counter || FEKC || IV
5. (Tag, MetadataC) = AES-GCMENC(FEKP, IV, Metadata, AAD)
6. The header is finally assembled as:

IV || Tag || FEKC || MetadataC || Counter

ENGINEERS AND DEVICES
WORKING TOGETHER

Data block encryption
An encrypted data block, C, is constructed with the following steps
1. A new Initialization Vector, IV, is initialized from RNG
2. P, is the unencrypted block of data
3. FEK = AES-ECBDEC(SSK, FEKC)
4. Additional Authenticated Data, AAD = FEKC || IV
5. Tag and C is produced with: (Tag, C) = AES-GCM(FEKP, IV, P, AAD)

Tag and IV are saved in the node protecting the encrypted data block.

ENGINEERS
AND DEVICES

WORKING
TOGETHER

Atomic updates
● All parts of a secure storage object exists in two backup

versions, 0 and 1
● The backup version in use is called the active version and

the other version the inactive version
● The different parts are

○ Hash tree header
○ Hash tree node
○ Encrypted Data block

● All updates are done in the inactive versions until finally
the hash of the inactive node1 has been written into the
object list database

ENGINEERS
AND DEVICES

WORKING
TOGETHER

Object list database
Secure objects created by Trusted Applications, TAs, are
indexed in a special secure object

UUID of TA
Uniquely identifies a secure object

Object Identifier

Hash Hash of node1 in secure object

file_number Global unique file number

ENGINEERS
AND DEVICES

WORKING
TOGETHER

Object list database continued
● The object list database is stored under the name “dirf.db”

in normal world
● If RPMB is available the hash of node1 is stored in RPMB

and has full anti-rollback protection
● If RPMB is unavailable only a consistent state of all

objects can be provided, that is, rollback can’t be applied
on a single object

ENGINEERS
AND DEVICES

WORKING
TOGETHER

What’s next?
● RPMB: don’t program key unless some debug/testing

CFG_ is set
● Improve derivation of SSK from HUK

○ Should be done by the hardware crypto module. HUK should never
be read by software.

○ Unfortunately, we have no such driver upstream :(
● Reduce heap usage

○ Large objects uses much memory for nodes
● Storing Trusted Applications in secure storage

Thank You

#SFO17
SFO17 keynotes and videos on: connect.linaro.org
For further information: www.linaro.org

http://www.linaro.org

