Deploy STM32 family on Zephyr

Erwan Gouriou
Plan

- A glance at STM32 ecosystem
- STM32 porting on Zephyr
- Device tree concept applied to STM32 family
- What’s next for STM32 in Zephyr
A glance at STM32 Ecosystem
Quick outlook on STM32 SoC family

- Cortex-M based SoCs (M0 to M7)
- STM32 family encompasses today more than 700 SoC part numbers split in 10 series
- From Ultra Low Power (L: L0 > L4) to High Performance (F2 > H7)
- STM32 family keeps evolving (STM32H7) and more to come…
STM32 SoC naming convention

STM32

F

1

0

3

R

B

Family
- STM32 Cortex 32bit

Product type
- F Foundation
- L Ultra-low-power
- H High performance

Series
- 0 Cortex-M0
- 1 Cortex-M3
- 2 Cortex-M3
- 3 Cortex-M4
- 4 Cortex-M4
- 7 Cortex-M7

Sub-Lines:
- 0 ---
- 1 ---
- 2 ---
- 3 --- Small die
- 4 ---
- 5 --- Medium die
- 6 ---
- 7 --- Big die
- 8 ---
- 9 --- High integration

Lines:
- 0 Value
- 1 Access
- 2 USB
- 3 ---
- 4 ---
- 5 OTG
- 6 LCD/TFT+OTG
- 7 Ethernet
- 8 Regulator off
- 9 LCD TFT

Flash size (Kbytes):
- 4 16 E 512
- 6 32 F 768
- 8 64 G 1024
- B 128 H 1536
- C 256 I 2048
- D 384

Pins:
- F 20 pins
- G 28 pins
- K 32 pins
- T 36 pins
- S 44 pins
- C 48 pins
- R 64, 66 pins
- M 80 pins
- O 90 pins
- V 100 pins
- Q 132 pins
- Z 144
- I 176, 201 pins
- B 208 pins
- N 216 pins

A higher number means a richer configuration!
Focus on B-L475E-IOT01A (disco_l475_iot1)

STM32L4 SoC:
- Low power, 80MHz
- 1Mbit flash
- 128 kRAM

Inventek ISM43362-M3G: Wi-Fi Module

M24SR: NFC Module

HTS221: Humidity and Temperature

VLX53L0X: Time of Flight and gesture recognition

USB OTG

Inventek ISM43362-M3G: Wi-Fi Module

STM32L4 SoC:
- Low power, 80MHz
- 1Mbit flash
- 128 kRAM

M24SR: NFC Module

HTS221: Humidity and Temperature

VLX53L0X: Time of Flight and gesture recognition

Status: Upstreamed

MCU

Sensing

Connectivity

Arduino V3 connector

SPSGRF: Sub-GHz Module

64MBit Quad-SPI Flash

MP34DT01: Omnidirectional microphone (x2)

SPBTLE-RF: BT Module

LIS3MDL: 3-Axis magnetometer

LPS22HB: Barometer

LMS6DSL: 3D accelerometer and gyroscope

Connectivity

Sensing

MCU

Status: Upstreamed In progress
STM32Cube: Embedded Software for STM32

Main STM32Cube benefit: Abstraction

- Usual prejudices on HAL:
 - Size, sub optimization
 - Coding style...

- Usual pro-HAL arguments are:
 - Avoid re-inventing the wheel, allow to save time...
 - Thoroughly maintained and validated, help developing more mature drivers

- Abstraction capability breaks silos between series and re-inforces cooperation
 - Focussed competencies: more users and more reviewers on a single driver
 - More minds: more performant drivers
 - Reduce work duplication: faster increase of driver support
 - Less code: maintenance effort is reduced.
STM32Cube APIs: HAL vs LL

- **HAL (Hardware Abstraction Layers):**
 - High level and functional abstraction
 - 100% coverage of all peripherals
 - Good match for complex drivers such as USB, Ethernet, ..
 - Higher portability => bigger software footprints, more time running adaptation code

- **LL (Low-Layers):**
 - Light-weight, optimized, expert oriented set of APIs designed for both performance and runtime efficiency
 - Register level access library. Do not use global variables. Atomic operations
 - Fit for most zephyr drivers and allows to build stm32 generic lightweight drivers.
 - Perfect fit for “simple IPs” drivers

- **HAL/LL could be used together in a single driver**
STM32 porting on Zephyr
STM32 SoC porting: Minimize code duplication

- Code organized per series
- SoC specific info (number of IRQ, SoC reference) is stored under Kconfig.defconfig.stm32yyyxx
- New “st_stm32/common” folder introduced to factorize cross-series code (MPU code for now)
- Introduction of device tree will further optimize SoC specific code

```
arch/arm/soc/st_stm32
  ○ common (new! More code to be put here)
  ○ stm32f1
    ■ Kconfig.defconfig.stm32f103xx
    ■ Kconfig.defconfig.stm32f107xc
    ■ ...
  ○ ...
  ○ stm32l4
```
STM32Cube: Integration in Zephyr

- One package per family, stored under ext/hal/st/stm32cube
- Each package divided in 2 parts:
 - HAL and LL APIs (stm32cube/drivers)
 - CMSIS file (stm32cube/soc. Eg: stm32f103xe.h): sets of defines and registers structures
 - **Tip**: CMSIS files are useful to check SoC supported features and SoCs comparison
- Maintained and updated at each Zephyr DV
- STM32Cube, as an external library, should not be modified
- In case of genuine STM32Cube bug:
 - Report to STM32Cube Zephyr maintainer (issue will be raised in ST bugtracker)
 - Fix issue in a separate PR.
 - Reported issues are taken into account / Don’t hesitate to report issues!
How to: Introduce new LL/HAL driver

- HAL or LL:
 - Driver complexity?
 - Acceptable footprint?
 - Supported features?
 - Validation effort?

- Adapt code structure to IP diversity:
 - Maximize code reuse
 - Use CMSIS defines
 - Take benefit from porting APIs
 - Preserve readability

- Lot of HAL/LL examples in stm32cube packages

- Community support on https://community.st.com

Small variations within family:
 - `spi_ll_stm32.c` (use of #ifdef’s)

2 different IPs in whole family (v1/v2):
 - `i2c_ll_stm32.c`
 - `i2c_ll_stm32_v1.c` (I2C V1: F1/F2/F4/L1)
 - `i2c_ll_stm32_v2.c` (I2C V2: F0/F3/F7/L4)

Important heterogeneity:
 - `stm32_ll_clock.c`
 - `stm32f1x_ll_clock.c` (F1 series)
 - `stm32f3x_ll_clock.c` (F3 series)
 - ...
Device tree concept applied to STM32 family
STM32 device tree: Zephyr vs Linux (1/2)

- STM32 dts files deployed in Zephyr and Linux in parallel
- No dependency today
- Long term goal: Common repo
- Respective evolutions monitored and controlled
 - Divergence points are listed
 - Regular alignments done
 - Linux kernel STM32 machine maintainer is reviewer of STM32 Zephyr dts PRs
- Today, alignments are only done in one way:
 - Linux => Zephyr
- Once device tree will be stabilized in Zephyr:
 - Linux <=> Zephyr
STM32 device tree: Zephyr vs Linux (2/2)

- Know Issues (and current solutions):
 - **Set of SoCs:**
 - More SoCs in Zephyr (were Linux won’t fit)
 - Inheritance model should foresee this.
 - Current answer is to use generic stm32XX.dtsi files to store this minimum configuration
 - **Properties:**
 - Different drivers > Different properties
 - Current solution: Use of string prefix “zephyr,” (Eg: “zephyr,bt-uart”)
 - **Bindings:**
 - Different drivers > Different bindings
 - Current solution: Use same paths/same file names but different #define

- Upstream procedures for common repo are yet to be discussed
STM32 device tree organization

- **armv7-m.dtsi**
- **stm32f4.dtsi**
 - soc{ rcc
 - pinctrl
 - uart1
 - uart2
 - ...
 - i2c1
 - i2c2}
- **stm32f4-pinctrl.dtsi**
 - soc {pinctrl { usart1_pin_a{ tx =, rx=}
 - usart2_pin_a{ ...
 - ...
 - i2c1_pin_a
 - i2c2_pin_b}}
- **stm32f401.dtsi**
- **stm32f407.dtsi**
 - soc{ usart3
 - uart4
 - uart5}
- **stm32f407-pinctrl.dtsi**
 - soc{ pinctrl{ usart3_pin_a
 - uart4_pin_a
 - uart5_pin_a}
What’s next for STM32 in Zephyr

● Keep extending STM32 drivers support
● Complete STM32 code factorization (still some duplicated code between series)
● Expand connectivity support
 ○ Add Wi-Fi support on Disco_L475_IOT
 ○ Add Sub-GHz
 ○ NFC…
 ○ USB
Back up slides
STM32 prototyping boards and shields

- STM32 Nucleo development boards
 - Flexible prototyping

- Discovery kits
 - Key feature prototyping

- Evaluation boards
 - Full feature evaluation

- STM32 Nucleo expansion boards
 - Add-on functionalities

- Third-party boards
 - From full evaluation to open hardware
Status on STM32 presence in Zephyr (17’09)

- 4 series present (F1, F3, F4, L4)
- 21 SoCs ported
- 22 Boards available

<table>
<thead>
<tr>
<th></th>
<th>GPIO/Pinmux</th>
<th>RCC</th>
<th>UART</th>
<th>I2C</th>
<th>SPI</th>
<th>RNG</th>
<th>PWM</th>
<th>Flash</th>
<th>DMA</th>
<th>EXTI</th>
<th>ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td>stm32f1
4 socs
4 boards</td>
<td>Z</td>
<td>LL</td>
<td>HAL/LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>HAL</td>
<td>NA</td>
<td>NA</td>
<td>Z</td>
<td>NA</td>
</tr>
<tr>
<td>stm32f3
3 socs
3 boards</td>
<td>Z</td>
<td>LL</td>
<td>HAL/LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>HAL</td>
<td>Z</td>
<td>NA</td>
<td>Z</td>
<td>NA</td>
</tr>
<tr>
<td>stm32f4
10 socs
11 boards</td>
<td>Z</td>
<td>LL</td>
<td>HAL/LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>HAL</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>HAL</td>
</tr>
<tr>
<td>stm32l4
4 socs
4 boards</td>
<td>Z</td>
<td>LL</td>
<td>HAL/LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>HAL</td>
<td>Z</td>
<td>NA</td>
<td>Z</td>
<td>NA</td>
</tr>
</tbody>
</table>

Legend:
- Z: Zephyr native
- LL: Based on STM32CUBE LL
- HAL: Based on STM32CUBE HAL

Available
Issues reported
Zephyr STM32 Misc

- BT available with X-Nucleo shield or embedded on Disco IoT Board
 - Activate with CONFIG_BT_SPI_BLUENRG
Thank You
Contact: erwan.gouriou@linaro.org

#SFO17
SFO17 keynotes and videos on: connect.linaro.org
For further information: www.linaro.org