Overview

- Introduction
- UHDTV - Technologies
- HDR TV Standards
- HDR support in Android/AOSP
- HDR support in Linux/V4L2
Introduction

- The migration from High Definition TV (HDTV) to Ultra High Definition TV (UHDTV) is upon us
- UHDTV brings not only enhanced spatial resolution, but other important advanced technologies
- The important thing to remember is that these technologies used in UHDTVs reflect an upgrade to the entire content ecosystem, from capture, transmission, and display
- The goal is to bring the original dynamic range of mastered content to the viewer at home
Preserving the human vision: Capture to Display

Image source: avforums
UHDTV System Technologies

- High Resolution Video: 3820x2160 pixels (~4x HDTV pixels)
- High Dynamic Range (HDR) - the dynamic range refers to the luminance and the max and min amount of light a TV can produce
 - Luminance is expressed in ‘nits’ a unit of brightness density
 - Today’s Standard Dynamic Range (SDR) luminance is in the range of 0.0002 to 100 nits
 - HDR luminance variation is 0.0005 nits to >1000 nits
- Wide Color Gamut (WCG) - a TV’s color gamut indicates the level of saturation and number of colors a TV can produce
- Electro-Optical Transfer Functions
 - More closely model the human visual system
- Metadata: Data that accompanies the content with information on mastering and dealing with display types
HDR TV Standards

- Standards have been defined and continue to evolve for every aspect of HDR content creation, transport, delivery, and display
- Colorspace:
 - ITU-R Recommendation BT.2020 defines a wide gamut color space
- Transfer functions:
 - Adoption of new transfer functions not based on CRT technology (i.e. SMPTE ST.2084)
- Metadata:
 - SMPTE ST2086:2014 defines static metadata of the associated video content
 - Supported by HDMI 2.0a, included with mastered HDR content to convey color volume of the mastering display and luminance of the content
- CTA has defined minimum guidelines for a TV to be referred to as an HDR-Compatible Display
- UHD Alliance: promotes UHD standards development, branding and certification
- Blu-ray Disc Association (BDA) new Ultra HD Blu-ray Disc specification
Wide Color Gamut (Rec.709, P3, Rec.2020)

Image credit: Spectracal
 HDR Transfer Functions

Source: https://www.mysterybox.us/blog/2016/10/19/hdr-video-part-3-hdr-video-terms-explained
UHD Alliance

- Multi-industry alliance to promote UHD standards development and UHD branding, including:
 - TV mfgs Samsung, Sony, LG, Panasonic...
 - Hollywood studios: Disney, Warner, Universal, Fox...
 - Amazon, Dolby, Netflix, DirecTV, Microsoft...

- UHD Alliance Premium Certified
 - Resolution: 3840x2160 (4K)
 - Color depth: 10-bit signal
 - Color palette: Wide Color Gamut
 - Signal input: BT.2020 color representation
 - Display Reproduction: >90% of P3 color gamut
 - High dynamic range: SMPTE ST2084 EOTF
 - Minimum brightness and contrast ratios: Min brightness of 1,000 nits, with black level max 0.05 nits (20,000:1 contrast ratio) OR min brightness of 540 nits with black level maximum of 0.0005 (>1 million:1)
 - Also specifications for content and mastering to match the specs for the TVs
HDR TV Delivery Systems

- **HDR 10 Media Profile - CTA official HDR video standard for HDR TVs**
 - HDR 10 requires use of SMPTE ST.2084 EOTF, BT.2020 color space, 10 bits per channel, 4:2:0 chroma subsampling and inclusion of SMPTE ST.2086 and MaxCLL and MaxFALL metadata
 - Static metadata, not compatible with SDR TVs
 - Playback requires minimum of HDMI 2.0a signal interface

- **Dolby Vision™ - proprietary implementation of the PQ curve**
 - DV supports both the BT.2020 and DCI-P3 color spaces at 10 and 12 bits per channel
 - Key feature is support of scene by scene transform metadata
 - Scalable solution that can optionally provide compatibility with HDR10 and SDR displays via base layer and enhancement layer
 - Optionally compatible with HDR10 TVs and SDR TVs

- **BBC/NHK**
 - Uses HLG transfer function
 - Does not require metadata
 - Playback on HLG-compatible HDR TVs or SDR TVs
 - Usually used for live broadcast
HDR Support in Android

- Initial HDR support introduced in Android 7.0
 - Includes the creation of proper constants for the discovery and setup of HDR video pipelines
 - HDR supported in tunneled video playback mode

As of Android 7.0 release, the following HDR technologies are supported.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Dolby-Vision</th>
<th>HDR10</th>
<th>VP9-HLG</th>
<th>VP9-PQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codec</td>
<td>AVC/HEVC</td>
<td>HEVC</td>
<td>VP9</td>
<td>VP9</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>ST-2084</td>
<td>ST-2084</td>
<td>HLG</td>
<td>ST-2084</td>
</tr>
<tr>
<td>HDR Metadata Type</td>
<td>Dynamic</td>
<td>Static</td>
<td>None</td>
<td>Static</td>
</tr>
</tbody>
</table>

Source: https://source.android.com/devices/tech/display/hdr
Android - HDR

- **HDR Discovery**
 - Display, Decoder [Dolby-Vision, HEVC HDR 10, VP9 HLG & PQ], Extractors for MP4 and WebM containers

Component requirements for each HDR technology are shown in the following table:

<table>
<thead>
<tr>
<th>Technology</th>
<th>Dolby-Vision</th>
<th>HDR10</th>
<th>VP9-HLG</th>
<th>VP9-PQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported HDR type (Display)</td>
<td>HDR_TYPE_DOLBY_VISION</td>
<td>HDR_TYPE_HDR10</td>
<td>HDR_TYPE_HLG</td>
<td>HDR_TYPE_HDR10</td>
</tr>
<tr>
<td>Container (Extractor)</td>
<td>MP4</td>
<td>MP4</td>
<td>WebM</td>
<td>WebM</td>
</tr>
<tr>
<td>Decoder</td>
<td>MIMETYPE_VIDEO_DOLBY_VISION</td>
<td>MIMETYPE_VIDEO_HEVC</td>
<td>MIMETYPE_VIDEO_VP9</td>
<td>MIMETYPE_VIDEO_VP9</td>
</tr>
<tr>
<td>Profile (Decoder)</td>
<td>One of the Dolby profiles</td>
<td>HEVCProfileMain10HDR10</td>
<td>VP9Profile2HDR or VP9Profile3HDR</td>
<td>VP9Profile2HDR or VP9Profile3HDR</td>
</tr>
</tbody>
</table>

Source: https://source.android.com/devices/tech/display/hdr
Android - HDR Enablement

- SoC vendors and OEMs must do additional work to enable HDR support for a device
- Display
 - Hardware composition: must support blending HDR content with non-HDR content
 - Display discovery: HDR display discovery only supported by HWC2 via an adapter
 - HWC2 exposes a new API to propagate HDR Static Data to the framework and application
 - HDMI: Capabilities provided via HDMI EDID (CTA-861.3, sect. 4.2)
 - EOTF: Traditional Gamma (SDR, HDR), SMPTE 2084
 - Decoders: add HDR-capable tunnelled decoders and advertise HDR support
 - Dolby Vision™: must add a D-V capable HDR OMX decoder
 - HDR10: must add an HDR10-capable OMX decoder
 - A tunnelled HEVC decoder supporting parsing and handling of HDMI metadata, support parsing the mastering metadata SEI blocks and other HDR info in SPS
 - Extractors
 - Dolby Vision™ Extractor
 - HDR10 and VP9 HDR Extractor
 - Pipelines: HDR10 decoder pipeline, Dolby Vision™ decoder pipeline, VP9 decoder pipeline
HDR Support in Linux - V4L2

- HDR fits under the V4L2 media subsystem
- HDR10 colorimetry is supported in the V4L2 API
- However, there is still no 10 and/or 12-bit RGB/YUV pixel formats defined
- Hybrid Log-Gamma signaling for the transfer function is not yet implemented … should not be too difficult
- Dolby Vision™ is proprietary and is its signaling is not supported
- There are patches in progress for HEVC support from Samsung (see https://lkml.org/lkml/2017/6/19/31)
 - Section 2.9 Compressed formats (has support for VP9 codec)
 - Section 1.10 Extended controls
 - Section 2.14 Colorspaces support for BT.2020 colorspace V4L2_COLORSPACE_BT2020
 - Support for SMPTE 2084 transfer function V4L2_XFER_FUNC_SMPTE2084
HDR Implementation VPU vs GPU

- The majority of HDR solutions provided by SoC vendors are VPU based
- With respect to GPUs, there are 3D applications that already do HDR rendering
 - Proposal to render into FP16 (half-float) buffers and then composite HDR and SDR content with appropriate tone mapping based on the target monitor capabilities
 - Using the inverse EOTF encode the FP16 data into the display signal
 - Send to monitor with HDR metadata, where the monitor would apply the EOTF to decode the digital signal into HDR content
- Requires an API to get the HDR information from the display provided in the Extended Display Identification Data (EDID)
- Wayland compositors need to be FP16 aware
References

- **HDR Demystified**: T. Schulte, with J. Barsotti v.1.0 March 2016
- Mystery Box HDR Video [Part 1], [Part 3]
- SMPTE Study Group Report [High-Dynamic-Range (HDR) Imaging Ecosystem]
- Acoustic Frontiers - [UHD 101]: Demystifying 4K, UHD BLU RAY, Wide Color Gamut, HDR, 4:4:4, 18GBPS and the Rest!
- The Broadcast Bridge - [UHD and HDR] - the Dolby View
- A Perceptual EOTF for Extended Dynamic Range Imagery: S. Miller, Dolby Laboratories, Inc.
- Philips HDR technology - hdr: version 1.0 2015-80-21
- What is UHD Alliance Premium Certified? ; c|net G. Morrison, March 11, 2016
- Rec. 2020 Wikipedia
- HDR Video Playback - https://source.android.com/devices/tech/display/hdr
- Part I Video for Linux API
 - 1. Common API Elements
 - 2. Image Formats
- LWN.net - [Linux and high dynamic range displays](https://lwn.net): J. Edge, October 5, 2016
- [Linux and High Dynamic Range (HDR) Display](https://lwn.net), XDC 2016, Andy Ritger
Thank You

#SFO17
SFO17 keynotes and videos on: connect.linaro.org
For further information: www.linaro.org